我国2020年将首次探测火星,将完成火星探测器围绕火星飞行、火星表面降落以及巡视探测等任务。火星是地球的“邻居”,其半径约为地球半径的,质量约为地球质量的,设火星的卫星A和地球卫星B都围绕各自的中心天体做匀速圆周运动,距离中心天体的表面距离与该中心天体的半径相等,下面说法正确的是( ) A. 卫星A、B加速度之比为2:5 B. 卫星A、B线速度之比为 C. 卫星角速度之比为 D. 卫星A、B周期之比为
好,我们逐步推理。
1. 已知条件
地球:质量 M e M_e M e ,半径 R e R_e R e 火星:质量 M m = 1 10 M e M_m = \frac{1}{10} M_e M m = 10 1 M e ,半径 R m = 1 2 R e R_m = \frac{1}{2} R_e R m = 2 1 R e
卫星 A(绕火星)距离火星表面 h A = R m h_A = R_m h A = R m → 轨道半径 r A = R m + h A = 2 R m r_A = R_m + h_A = 2 R_m r A = R m + h A = 2 R m 卫星 B(绕地球)距离地球表面 h B = R e h_B = R_e h B = R e → 轨道半径 r B = R e + h B = 2 R e r_B = R_e + h_B = 2 R_e r B = R e + h B = 2 R e
用 R m = 1 2 R e R_m = \frac12 R_e R m = 2 1 R e 可得:
r A = 2 R m = 2 × 1 2 R e = R e r_A = 2 R_m = 2 \times \frac12 R_e = R_e r A = 2 R m = 2 × 2 1 R e = R e r B = 2 R e r_B = 2 R_e r B = 2 R e
质量比:
M m M e = 1 10 \frac{M_m}{M_e} = \frac{1}{10} M e M m = 10 1
2. 加速度公式(向心加速度由万有引力提供)
a = G M r 2 a = \frac{GM}{r^2} a = r 2 GM
所以:
a A a B = M m / r A 2 M e / r B 2 = 1 10 M e / R e 2 M e / ( 2 R e ) 2 \frac{a_A}{a_B} = \frac{M_m / r_A^2}{M_e / r_B^2} = \frac{\frac{1}{10} M_e / R_e^2}{M_e / (2R_e)^2} a B a A = M e / r B 2 M m / r A 2 = M e / ( 2 R e ) 2 10 1 M e / R e 2
注意 r A = R e r_A = R_e r A = R e , r B = 2 R e r_B = 2 R_e r B = 2 R e :
a A a B = 1 10 1 / 4 ⋅ 1 1 (同乘 R e 2 / M e 简化) \frac{a_A}{a_B} = \frac{\frac{1}{10}}{1/4} \cdot \frac{1}{1} \quad \text{(同乘 } R_e^2/M_e \text{ 简化)} a B a A = 1/4 10 1 ⋅ 1 1 (同乘 R e 2 / M e 简化)
更清楚写:
a A ∝ M m / r A 2 a_A \propto M_m / r_A^2 a A ∝ M m / r A 2 a B ∝ M e / r B 2 a_B \propto M_e / r_B^2 a B ∝ M e / r B 2 a A a B = M m M e ⋅ r B 2 r A 2 = 1 10 ⋅ ( 2 R e ) 2 R e 2 \frac{a_A}{a_B} = \frac{M_m}{M_e} \cdot \frac{r_B^2}{r_A^2} = \frac{1}{10} \cdot \frac{(2R_e)^2}{R_e^2} a B a A = M e M m ⋅ r A 2 r B 2 = 10 1 ⋅ R e 2 ( 2 R e ) 2 = 1 10 × 4 = 2 5 = \frac{1}{10} \times 4 = \frac{2}{5} = 10 1 × 4 = 5 2
所以 A 选项 a A : a B = 2 : 5 a_A : a_B = 2:5 a A : a B = 2 : 5 正确 ✅
3. 线速度 v = G M r v = \sqrt{\frac{GM}{r}} v = r GM
v A v B = M m M e ⋅ r B r A = 1 10 ⋅ 2 R e R e = 1 10 ⋅ 2 = 2 10 = 1 5 \frac{v_A}{v_B} = \sqrt{\frac{M_m}{M_e} \cdot \frac{r_B}{r_A}} = \sqrt{\frac{1}{10} \cdot \frac{2R_e}{R_e}} = \sqrt{\frac{1}{10} \cdot 2} = \sqrt{\frac{2}{10}} = \sqrt{\frac15} v B v A = M e M m ⋅ r A r B
= 10 1 ⋅ R e 2 R e
= 10 1 ⋅ 2
= 10 2
= 5 1
即 v A : v B = 1 : 5 v_A : v_B = 1 : \sqrt{5} v A : v B = 1 : 5
, B 选项 可能给的数值是 2 : 5 \sqrt{2} : \sqrt{5} 2
: 5
(假设化简),我们算得是 2 : 10 = 1 : 5 \sqrt{2} : \sqrt{10} = 1 : \sqrt{5} 2
: 10
= 1 : 5
。看选项中 B 的写法: 题里B写的“卫星A、B线速度之比为 ” 没写数字吗?在题里可能写成了数字比,若B是 2 : 5 \sqrt{2}: \sqrt{5} 2
: 5
就错,因为我们的结果是 1 : 5 = 5 : 5 1:\sqrt5 = \sqrt{5}:5 1 : 5
= 5
: 5 或 2 : 10 \sqrt{2}: \sqrt{10} 2
: 10
等,不是 2 : 5 \sqrt{2} : \sqrt{5} 2
: 5
。 但没看到具体数字,这里判断: 计算 v A / v B = 2 10 = 1 5 v_A / v_B = \sqrt{\frac{2}{10}} = \frac{1}{\sqrt5} v A / v B = 10 2
= 5
1 ,如果选项 B 是 1 : 5 1: \sqrt{5} 1 : 5
则对,是 2 : 5 \sqrt{2}:5 2
: 5 则不对,要对照原选项看。
4. 角速度 ω = G M r 3 \omega = \sqrt{\frac{GM}{r^3}} ω = r 3 GM
ω A ω B = M m M e ⋅ ( r B r A ) 3 \frac{\omega_A}{\omega_B} = \sqrt{\frac{M_m}{M_e} \cdot \left( \frac{r_B}{r_A} \right)^3 } ω B ω A = M e M m ⋅ ( r A r B ) 3
r B r A = 2 R e R e = 2 \frac{r_B}{r_A} = \frac{2R_e}{R_e} = 2 r A r B = R e 2 R e = 2 ( r B r A ) 3 = 8 \left( \frac{r_B}{r_A} \right)^3 = 8 ( r A r B ) 3 = 8 M m M e = 0.1 \frac{M_m}{M_e} = 0.1 M e M m = 0.1 ω A ω B = 0.1 × 8 = 0.8 = 4 5 = 2 5 \frac{\omega_A}{\omega_B} = \sqrt{ 0.1 \times 8 } = \sqrt{0.8} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} ω B ω A = 0.1 × 8
= 0.8
= 5 4
= 5
2
即 ω A : ω B = 2 : 5 \omega_A : \omega_B = 2 : \sqrt{5} ω A : ω B = 2 : 5
,若选项 C 是这个就对。
5. 周期 T = 2 π r 3 G M T = 2\pi \sqrt{\frac{r^3}{GM}} T = 2 π GM r 3
T A T B = r A 3 M m ⋅ M e r B 3 = M e M m ⋅ r A 3 r B 3 \frac{T_A}{T_B} = \sqrt{ \frac{r_A^3}{M_m} \cdot \frac{M_e}{r_B^3} } = \sqrt{ \frac{M_e}{M_m} \cdot \frac{r_A^3}{r_B^3} } T B T A = M m r A 3 ⋅ r B 3 M e
= M m M e ⋅ r B 3 r A 3
M e M m = 10 \frac{M_e}{M_m} = 10 M m M e = 10 r A r B = R e 2 R e = 1 2 ⟹ ( r A r B ) 3 = 1 8 \frac{r_A}{r_B} = \frac{R_e}{2R_e} = \frac12 \implies \left( \frac{r_A}{r_B} \right)^3 = \frac18 r B r A = 2 R e R e = 2 1 ⟹ ( r B r A ) 3 = 8 1 T A T B = 10 × 1 8 = 10 8 = 5 4 = 5 2 \frac{T_A}{T_B} = \sqrt{ 10 \times \frac18 } = \sqrt{\frac{10}{8}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} T B T A = 10 × 8 1
= 8 10
= 4 5
= 2 5
即 T A : T B = 5 : 2 T_A : T_B = \sqrt{5} : 2 T A : T B = 5
: 2 ,若 D 选项给反了就不对。
6. 对原题选项(题中可能只给了比值形式) A 选项 2 : 5 2:5 2 : 5 → 我们算得 2 : 5 2:5 2 : 5 对 ✅ B 选项要核对数字(可能错) C 选项我们得 ω A : ω B = 2 : 5 \omega_A:\omega_B = 2:\sqrt5 ω A : ω B = 2 : 5
,若题中写此则对 D 选项 T A : T B = 5 : 2 T_A:T_B = \sqrt{5}:2 T A : T B = 5
: 2 ,若题中写反则错
7. 如果原题是单选题 常会选 A 作为正确。 若多选题且选项是: A 对,B 错(B可能是 2 : 5 \sqrt{2}: \sqrt{5} 2
: 5
这种),C 对,D 错(D可能写 2 : 5 2:\sqrt5 2 : 5
是角速度比值而非周期比值)。
但题中 C 给的是 “卫星角速度之比为” 没写数,要对照原卷图。 从常见题来看,典型答案是 A、C 对 。
因为没有原卷的完整选项数值,按计算结果判断:
A C \boxed{AC} A C
即 A 和 C 对。